Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology.

نویسندگان

  • Jing Wang
  • Zhen Sheng
  • Le Li
  • Albert Pang
  • Aimin Wu
  • Wei Li
  • Xi Wang
  • Shichang Zou
  • Minghao Qi
  • Fuwan Gan
چکیده

Low-loss and low-crosstalk 8 × 8 arrayed waveguide grating (AWG) routers based on silicon nanowire waveguides are reported. A comparative study of the measurement results of the 3.2 nm-channel-spacing AWGs with three different designs is performed to evaluate the effect of each optimal technique, showing that a comprehensive optimization technique is more effective to improve the device performance than a single optimization. Based on the comprehensive optimal design, we further design and experimentally demonstrate a new 8-channel 0.8 nm-channel-spacing silicon AWG router for dense wavelength division multiplexing (DWDM) application with 130 nm CMOS technology. The AWG router with a channel spacing of 3.2 nm (resp. 0.8 nm) exhibits low insertion loss of 2.32 dB (resp. 2.92 dB) and low crosstalk of -20.5~-24.5 dB (resp. -16.9~-17.8 dB). In addition, sophisticated measurements are presented including all-input transmission testing and high-speed WDM system demonstrations for these routers. The functionality of the Si nanowire AWG as a router is characterized and a good cyclic rotation property is demonstrated. Moreover, we test the optical eye diagrams and bit-error-rates (BER) of the de-multiplexed signal when the multi-wavelength high-speed signals are launched into the AWG routers in a system experiment. Clear optical eye diagrams and low power penalty from the system point of view are achieved thanks to the low crosstalk of the AWG devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary Investigation of an SOI-based Arrayed Waveguide Grating Demodulation Integration Microsystem

An arrayed waveguide grating (AWG) demodulation integration microsystem is investigated in this study. The system consists of a C-band on-chip LED, a 2 × 2 silicon nanowire-based coupler, a fiber Bragg grating (FBG) array, a 1 × 8 AWG, and a photoelectric detector array. The coupler and AWG are made from silicon-on-insulator wafers using electron beam exposure and response-coupled plasma techno...

متن کامل

Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared.

A resonator is characterized with two cascaded arrayed waveguide gratings (AWGs) in a ring formation. From this structure, the on-chip transmittance of a single AWG is extracted, independent of coupling efficiency. It provides improved measurement accuracy, which is essential for developing AWGs with extremely low loss. Previous methods normalize the off-chip AWG transmittance to that of a refe...

متن کامل

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array.

We demonstrate a compact, fiber-pigtailed, 4-by-4 wavelength router in Silicon-on-insulator photonic wires, fabricated using CMOS processing methods. The core is an AWG with a 250GHz channel spacing and 1THz free spectral range, on a 425x155 microm(2) footprint. The insertion loss of the AWG was reduced to 3.5dB by applying a two-step processing technique. The crosstalk is -12dB. The device was...

متن کامل

Optimal Design of an Ultrasmall SOI-Based 1 × 8 Flat-Top AWG by Using an MMI

Four methods based on a multimode interference (MMI) structure are optimally designed to flatten the spectral response of silicon-on-insulator- (SOI-) based arrayed-waveguide grating (AWG) applied in a demodulation integration microsystem. In the design for each method, SOI is selected as the material, the beam propagation method is used, and the performances (including the 3 dB passband width,...

متن کامل

A micromachined separable RF connector fabricated using low-resistivity silicon

A micromachined separable RF connector is demonstrated using low-resistivity silicon as the substrate material. The design is based around a two-part device, containing pins capable of deflections perpendicular to the substrate plane. Thick SU-8 dielectric is used to reduce lossy substrate coupling and mechanical interlocking is introduced to ensure robust attachment to the substrate during fab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 8  شماره 

صفحات  -

تاریخ انتشار 2014